Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A molecular timetable for apical bud formation and dormancy induction in poplar.

Identifieur interne : 003C57 ( Main/Exploration ); précédent : 003C56; suivant : 003C58

A molecular timetable for apical bud formation and dormancy induction in poplar.

Auteurs : Tom Ruttink [Belgique] ; Matthias Arend ; Kris Morreel ; Véronique Storme ; Stephane Rombauts ; Jörg Fromm ; Rishikesh P. Bhalerao ; Wout Boerjan ; Antje Rohde

Source :

RBID : pubmed:17693531

Descripteurs français

English descriptors

Abstract

The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.

DOI: 10.1105/tpc.107.052811
PubMed: 17693531
PubMed Central: PMC2002631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A molecular timetable for apical bud formation and dormancy induction in poplar.</title>
<author>
<name sortKey="Ruttink, Tom" sort="Ruttink, Tom" uniqKey="Ruttink T" first="Tom" last="Ruttink">Tom Ruttink</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent</wicri:regionArea>
<wicri:noRegion>9052 Gent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arend, Matthias" sort="Arend, Matthias" uniqKey="Arend M" first="Matthias" last="Arend">Matthias Arend</name>
</author>
<author>
<name sortKey="Morreel, Kris" sort="Morreel, Kris" uniqKey="Morreel K" first="Kris" last="Morreel">Kris Morreel</name>
</author>
<author>
<name sortKey="Storme, Veronique" sort="Storme, Veronique" uniqKey="Storme V" first="Véronique" last="Storme">Véronique Storme</name>
</author>
<author>
<name sortKey="Rombauts, Stephane" sort="Rombauts, Stephane" uniqKey="Rombauts S" first="Stephane" last="Rombauts">Stephane Rombauts</name>
</author>
<author>
<name sortKey="Fromm, Jorg" sort="Fromm, Jorg" uniqKey="Fromm J" first="Jörg" last="Fromm">Jörg Fromm</name>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</author>
<author>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
</author>
<author>
<name sortKey="Rohde, Antje" sort="Rohde, Antje" uniqKey="Rohde A" first="Antje" last="Rohde">Antje Rohde</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17693531</idno>
<idno type="pmid">17693531</idno>
<idno type="doi">10.1105/tpc.107.052811</idno>
<idno type="pmc">PMC2002631</idno>
<idno type="wicri:Area/Main/Corpus">003A98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003A98</idno>
<idno type="wicri:Area/Main/Curation">003A98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003A98</idno>
<idno type="wicri:Area/Main/Exploration">003A98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A molecular timetable for apical bud formation and dormancy induction in poplar.</title>
<author>
<name sortKey="Ruttink, Tom" sort="Ruttink, Tom" uniqKey="Ruttink T" first="Tom" last="Ruttink">Tom Ruttink</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent</wicri:regionArea>
<wicri:noRegion>9052 Gent</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arend, Matthias" sort="Arend, Matthias" uniqKey="Arend M" first="Matthias" last="Arend">Matthias Arend</name>
</author>
<author>
<name sortKey="Morreel, Kris" sort="Morreel, Kris" uniqKey="Morreel K" first="Kris" last="Morreel">Kris Morreel</name>
</author>
<author>
<name sortKey="Storme, Veronique" sort="Storme, Veronique" uniqKey="Storme V" first="Véronique" last="Storme">Véronique Storme</name>
</author>
<author>
<name sortKey="Rombauts, Stephane" sort="Rombauts, Stephane" uniqKey="Rombauts S" first="Stephane" last="Rombauts">Stephane Rombauts</name>
</author>
<author>
<name sortKey="Fromm, Jorg" sort="Fromm, Jorg" uniqKey="Fromm J" first="Jörg" last="Fromm">Jörg Fromm</name>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
</author>
<author>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
</author>
<author>
<name sortKey="Rohde, Antje" sort="Rohde, Antje" uniqKey="Rohde A" first="Antje" last="Rohde">Antje Rohde</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="ISSN">1040-4651</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cell Differentiation (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Ethylenes (biosynthesis)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Light Signal Transduction (MeSH)</term>
<term>Meristem (cytology)</term>
<term>Meristem (growth & development)</term>
<term>Meristem (physiology)</term>
<term>Meristem (ultrastructure)</term>
<term>Organ Specificity (MeSH)</term>
<term>Plant Leaves (cytology)</term>
<term>Plant Leaves (embryology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Populus (ultrastructure)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Transcription Factors (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide abscissique (métabolisme)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Différenciation cellulaire (MeSH)</term>
<term>Facteurs de transcription (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (cytologie)</term>
<term>Feuilles de plante (embryologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Méristème (croissance et développement)</term>
<term>Méristème (cytologie)</term>
<term>Méristème (physiologie)</term>
<term>Méristème (ultrastructure)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Phototransduction (MeSH)</term>
<term>Populus (cytologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Populus (ultrastructure)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Éthylènes (biosynthèse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ethylenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Méristème</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Méristème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Meristem</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Meristem</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acide abscissique</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Méristème</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Meristem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Meristem</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Cell Differentiation</term>
<term>Cluster Analysis</term>
<term>Energy Metabolism</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Light Signal Transduction</term>
<term>Organ Specificity</term>
<term>Time Factors</term>
<term>Transcription Factors</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Différenciation cellulaire</term>
<term>Facteurs de transcription</term>
<term>Facteurs temps</term>
<term>Gènes de plante</term>
<term>Méristème</term>
<term>Métabolisme glucidique</term>
<term>Métabolisme énergétique</term>
<term>Phototransduction</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'organe</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17693531</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-4651</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>A molecular timetable for apical bud formation and dormancy induction in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>2370-90</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ruttink</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arend</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morreel</LastName>
<ForeName>Kris</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Storme</LastName>
<ForeName>Véronique</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rombauts</LastName>
<ForeName>Stephane</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fromm</LastName>
<ForeName>Jörg</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhalerao</LastName>
<ForeName>Rishikesh P</ForeName>
<Initials>RP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boerjan</LastName>
<ForeName>Wout</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rohde</LastName>
<ForeName>Antje</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>08</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C091601">ABI3 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055537" MajorTopicYN="N">Light Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018519" MajorTopicYN="N">Meristem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
<ArticleId IdType="pii">tpc.107.052811</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.107.052811</ArticleId>
<ArticleId IdType="pmc">PMC2002631</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1970 Sep 25;169(3952):1269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17772511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 21-28;408(6815):967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11140682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):1084-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2001;8(6):625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(5):707-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Feb;8(1):77-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(6):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(394):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Oct 15;99(2):199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10535738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2001 Jun 1;284(1):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11374882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15383661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(4):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 19;439(7074):290-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2006 Feb 1;78(3):779-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Apr;14(4):903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Sep;17(9):2507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):942-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10639184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):734-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Dec 15;115(Pt 24):4891-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(6):982-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(2):195-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15634197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(1):75-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15361142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Aug;129(4):1633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Nov;6(11):1567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7827492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1302-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1191-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2004;20:125-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004;16 Suppl:S18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2002 Jul 9;2002(140):re10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1664-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3470-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1056-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Feb;7(1):40-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Feb;9(1):28-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Oct;29(10):2000-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16930325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):143-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1292-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):35-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Feb;66(4):413-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15694451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):411-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Mar;18(3):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11858837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):805-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(12):1485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15197472</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Arend, Matthias" sort="Arend, Matthias" uniqKey="Arend M" first="Matthias" last="Arend">Matthias Arend</name>
<name sortKey="Bhalerao, Rishikesh P" sort="Bhalerao, Rishikesh P" uniqKey="Bhalerao R" first="Rishikesh P" last="Bhalerao">Rishikesh P. Bhalerao</name>
<name sortKey="Boerjan, Wout" sort="Boerjan, Wout" uniqKey="Boerjan W" first="Wout" last="Boerjan">Wout Boerjan</name>
<name sortKey="Fromm, Jorg" sort="Fromm, Jorg" uniqKey="Fromm J" first="Jörg" last="Fromm">Jörg Fromm</name>
<name sortKey="Morreel, Kris" sort="Morreel, Kris" uniqKey="Morreel K" first="Kris" last="Morreel">Kris Morreel</name>
<name sortKey="Rohde, Antje" sort="Rohde, Antje" uniqKey="Rohde A" first="Antje" last="Rohde">Antje Rohde</name>
<name sortKey="Rombauts, Stephane" sort="Rombauts, Stephane" uniqKey="Rombauts S" first="Stephane" last="Rombauts">Stephane Rombauts</name>
<name sortKey="Storme, Veronique" sort="Storme, Veronique" uniqKey="Storme V" first="Véronique" last="Storme">Véronique Storme</name>
</noCountry>
<country name="Belgique">
<noRegion>
<name sortKey="Ruttink, Tom" sort="Ruttink, Tom" uniqKey="Ruttink T" first="Tom" last="Ruttink">Tom Ruttink</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17693531
   |texte=   A molecular timetable for apical bud formation and dormancy induction in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17693531" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020